Transit-Centric Smart Mobility System for High-Growth Urban Activity Centers: Improving Energy Efficiency through Machine Learning PI: Jinhua Zhao **Presenter: Shenhao Wang** **Massachusetts Institute of Technology** June 24, 2021 2021 DOE Vehicle Technologies Office Annual Merit Review Presentation Project ID: eems103 This presentation does not contain any proprietary, confidential, or otherwise restricted information #### **Overview** #### **Timeline** - Start: October 2020End: December 2023 - Modification: 3 months delay of two researchers and 8 months delay of the other two due to foreign national processing (FNP) - 5% complete #### **Budget** - Total funding: \$1.75 Million - Budget period 1: \$499,945 #### **Barriers** - Underdeveloped transit systems cannot meet the travel demand of high-growth urban areas. - Short-term and long-term transit ridership cannot be predicted accurately. - The transit system is vulnerable to system disruptions and unresponsive to the real-time dynamics of travel demand. #### **Partners** - Research partners: Northeastern University; National Renewable Energy Laboratory. - Transit partners: Massachusetts Port Authority; Massachusetts Bay Transportation Authority; Chicago Transit Authority. 6/24/21 ### **Relevance – Achieve Three Main Objectives** - Objective 1. Designing a Transit-Centric Smart Mobility System (TSMS) that is adaptive to changing demand patterns, resilient to system disruptions, and responsive to real-time conditions. - Objective 2. Building the Integrated TSMS with the state-of-the-art technology, including robust optimization (RO), reinforcement learning (RL), and deep learning (DL) - Objective 3. Deploying operations control and demand. predictions in real-world experiments (Chicago and Boston) and large-scale simulations. Project framework ### **Relevance – Achieve Broad and Specific Impacts** #### **Broad Impacts** - Improving transit service quality, ridership, and energy efficiency, measured by NREL's Mobility-Energy-Productivity (MEP) metric. - Advancing technology transfer to transit operators and enhancing US industry practices in terms of mobility and energy efficiency #### **Specific Quantitative Impacts** #### **Field Experiments** - ≥ 5% reduction in passenger waiting and riding time for the specific routes in the field experiments - ≥ 8% increase in predictive performance in spatiotemporally detailed models for transit mode share #### **Simulations** - ≥ 5% increase in transit mode share - ≥ 3% increase in energy efficiency ## **Approach – Timeline and Go/No-Go Points** | Budget
Period | Start/End Date | Go/NG
Points | Description | | |------------------|---|--|--|--| | 1 | 10/01/20 –
12/31/21 (3~8
months' delay
due to FNP) | Completion of
Core
Technology
Modules | Transit operations planning, control, and demand prediction modules have functioning interfaces. Documenting the passenger waiting and riding time and predicted ridership as the output metrics Improving upon the baseline performances by ≥3% in all four scenarios. | | | 2 | 01/20/22 –
12/31/22 | Completion of
Pilot
Experiments | Detailed implementation plans for full-scale field experiments are prepared. At least ≥5% reduction of passenger waiting and riding time and ≥5% improvement of predictive performance in the completed pilot experiments. | | | 3 | 1/1/2023 –
12/31/2023 | Impact
Communicati
ons Complete | Success is evaluated by comparing results to the expected ≥5% reduction of passeng waiting and riding time and ≥8% improvement of predictive performance in experimen Impact of the technologies is evaluated by comparing to the expected ≥5% improvement of transit ridership and ≥3% improvement of energy efficiency in simulations. | | ## **Approach – Timeline and Milestones** | Budget
Period | G/NG | Milestones | Targeting
Objectives | Completion
Status | |------------------|---|---|-------------------------|----------------------| | 1 | Completion of
Core Technology
Modules | M1-1: Operations Planning and Control Modules | OBJ1,2 | 3% | | | | M1-2: Demand Prediction Module | OBJ1,2 | 12% | | | | M1-3: Completion of Data Collection | OBJ1,2 | 12% | | 2 | Completion of Pilot Experiments | M2-1: Pilot Operations Control Intervention | OBJ1,3 | NA | | | | M2-2: Pilot Demand Prediction | OBJ1,3 | NA | | | | M2-3: Completion of Integrated Simulation | OBJ1,2 | NA | | | Impact
Communications
Complete | M3-1: Full Operations Control Experiments | OBJ1,3 | NA | | | | M3-2: Full Demand Prediction Experiments | OBJ1,3 | NA | | 3 | | M3-3: Success Measures in Field Experiments | OBJ1,3 | NA | | | | M3-4: Success Measures in Large-Scale Simulations | OBJ1,3 | NA | | | | M3-5: Impact Communications Complete | OBJ1,3 | NA | ## Approach – Four Steps - Part 1. Inputs data collection: [Objectives 1,2] - Part 2. Technology development three modules: [Objectives 1,2] - Part 3. Technology implementation and transfer: [Objectives 1,2,3] - Part 4. Outputs impact evaluation: [Objectives 1,2,3] Four-step approach ## **Technical Accomplishments – Part 1 Collected and Shared Data** #### Data collection - · Socio-demographics data - Transit system data (e.g. rail and bus lines, stations, routes) - Spatiotemporal bus, rail, and transportation network companies (TNC) ridership #### **Data sharing** Shared data documentation and catalog on Github (https://github.com/sunnyqywang/Chicago- Integrated-Data-Repo.git) # Technical Accomplishments – Part 2.1 Building Demand Prediction Module with Deep Graphical Neural Networks - 1. Benchmark 1 Historical observation $y_t = y_{prev}$ - 2. Benchmark 2 Weighted least squares $y_t = X_t^m \beta^m + y_{prev} \lambda + \epsilon_t$ - 3. Deep graphical convolutional neural network Transit network in Chicago Downtown Architecture of Graph Neural Networks # Technical Accomplishments – Part 2.1 Capturing Uncertainty in Travel Demand Two Stations in Chicago Downtown #### **Example 1: Ridership in the Clark station (highest demand)** **Example 2: Ridership in the LaSalle station (lowest demand)** 6/24/21 DOE Annual Merit Presentation - MIT # Technical Accomplishments – Part 2.2 Creating Robust Transit Network with Robust Optimization #### Formulating the structure of the problem - Layer 1: Bus operation optimization - Layer 2: Bus operation optimization with multimodal extension - Layer 3: Joint network optimization for the multimodal system #### **Basic Formulation for bus frequency setting (Layer 1)** #### Inputs - Passenger flow (o, d, t): passengers with origin o and destination d departure at time t - The set of passenger flow \mathcal{F} - Demand matrix $u = (u_t^{o,d})$ - Feasibility set for schedules #### **Outputs** • Decision variables: $x = (x_t^{p,v}), x_t^{p,v} = 1$ indicates a vehicle with type v operating on a pattern p departures from the first station at time t, 0 otherwise. Technical Accomplishments – Part 2.3 Providing Real-Time Bus Feeder Service with Reinforcement Learning Agent: Buses 6/24/21 Environment: Simulation of the transit service with fixed and flexible routing using estimated demands as inputs - Training: exploring actions that yield the best overall reward (e.g. minimizing delay & service rejection) - Result: Finding the best decision to stay on fixed route vs. deviate in each segment #### Collaboration and Coordination with Other Institutions #### Research partners - Northeastern University: Collaborated on real-time control strategies and the formulation of RL. - National Renewable Energy Laboratory: Discussed the computation of MEP metric, data access, and integration of MEP into TSMS. #### **Transit partners** - Chicago Transit Authority: Collected the bus and rail ridership data with CTA's support; discussed upcoming survey and planning efforts around first-/last-mile connectivity - Massachusetts Bay Transportation Authority: Accessed the bus and rail ridership data. ## Other potential collaborators - Argonne National Lab: Discussed POLARIS capabilities and applications - Boston Seaport TMA: Discussed routing of private shuttles to prepare for field experiments ## Remaining Challenges and Barriers – Logistics, Technology, and **Implementation** #### Logistics challenges - Two researchers did not complete the FNP until December 2020. - Two researcher have not completed FNP yet (by May 2021). - Unfortunately FNP is out of both MIT and DOE's control. - Need to apply for at least three months' No-Cost Time Extension (NCTE) #### Technical challenges - Uncertainty quantification in DI models - Analytical solution for the RO formulation under relatively realistic assumptions - Curse of dimensionality and simulation efficiency in the RLbased real-time bus control #### Implementation challenges - Site choice for field experiment - Uncertainty in COVID-19 recovery timeline, long-term impacts on partners (e.g. Massport) ### **Proposed Future Research** ## 1. Data collection [BP1-Milestone 1.3] - Collect high-dimensional urban imagery and other essential data for technology development. - Continue to document and share data. ## 2. Technology Development [BP1-Milestone 1.1 and 1.2] - Create innovative DL models to predict both the mean and variance of travel demand. - Design bus frequency robust to demand uncertainty and unexpected disruption. - Design real-time bus control strategies with RL and efficient simulation. ## 3. Technology Implementation [BP2-Milestones 2-1/2/3] - Build the first TSMS integrating the three technology modules. - Provide an implementation plan for the field experiments. ### **Summary** #### **Objective** Build an Integrated TSMS with the state-of-the-art RO, RL, and DL techniques, and demonstrate the benefits in mobility and energy efficiency. #### Achievements (January – May, 2020) - Logistics & Collaboration - Kicked off the project externally and internally - Collaborated with the research and industrial partners for data access and technology development. - Technical Accomplishments - Collected and shared socio-economic and real-time ridership data. - Constructed benchmark and DL models for the travel demand prediction module. - Provided the formulation for transit operation planning and control modules with RO and RL techniques. ## **Technical Back-Up Slides** ### **Technical Backup Slides – A List of Acronyms** **BP: Budget Period** TSMS: Transit-centric Smart Mobility System DL: Deep Learning **RO: Robust Optimization** RL: Reinforcement Learning FNP: Foreign National Processing **TNC: Transportation Network Companies** MEP: Mobility-Energy-Productivity DOE: Department of Energy NREL: National Renewable Energy Laboratory NCTE: No-Cost Time Extension MIT: Massachusetts Institute of Technology ### **Technical Backup Slides – DL for Demand Prediction** #### **Uncertainty Quantification in Short-term Demand Forecasting** $$y = f(x) + \epsilon$$ $$\epsilon \sim Normal(0, \sigma^{2}(x))$$ - 1. Data Uncertainty $(\sigma^2(x))$: The uncertainty (noise) in data. Can be modelled as a function of inputs and quantified by propagating inputs through the neural network and estimate with a likelihood loss. - 2. Model Uncertainty: The uncertainty in the estimated model f. Can be quantified with ensemble: Take the predicted values $(\mu_1...\mu_K)$ and standard deviations $(\sigma_1 ... \sigma_K)$ of top K models, the ensembled mean (μ_*) and standard deviation (σ_*) are $$\mu_* = \frac{1}{K} \sum_k \mu_k$$ $$= \frac{1}{K} \sum_k (\sigma_k^2 + \mu_k^2) =$$ ## $\sigma_*^2 = rac{1}{K}\sum_k \left(\sigma_k^2 + \mu_k^2 ight) - \mu_*^2$ #### **Evaluation Metrics** - Mean: Mean Absolute Error, Root Mean Squared Error, Theil's U - 2. Prediction Interval: Prediction Interval Coverage Probability, Mean Prediction Interval Width - 3. Composite: Likelihood ## Technical Backup Slides – RO for Operation Planning - Uncertainty in the transit system: Demand uncertainty - Approach for protecting transit line operation against demand uncertainty: Robust Optimization - Key component in RO: uncertainty set (model the demand uncertainty in the transit system) - Feasible transit line operation: $$\mathcal{X}_{B} = \{ \boldsymbol{x} \in \{0, 1\}^{|\mathcal{P}| \times |\mathcal{V}| \times T} : \sum_{p \in \mathcal{P}} \sum_{v \in \mathcal{V}} \sum_{t=1}^{T} c^{p, v} x_{t}^{p, v} \leq B; \sum_{p \in \mathcal{P}} \sum_{v \in \mathcal{V}} x_{t}^{p, v} \leq 1, \ \forall t = 1, ..., T \}$$ Nominal (Non-robust) transit line frequency setting model: $$\begin{aligned} & \underset{x \in \mathcal{X}_{B}, \boldsymbol{\lambda}}{\min} \quad \sum_{(o,d,t) \in \mathcal{F}} \sum_{v \in \mathcal{V}} \sum_{p \in \mathcal{P}^{o,d}} \sum_{\tau = \tau_{t}^{o,d,p}}^{T} \left(w_{t,\tau}^{o,d,p,v} + \gamma v^{o,d,p} \right) \lambda_{t,\tau}^{o,d,p,v} \\ & \text{s.t.} \quad L_{\tau}^{p,v,s} = \sum_{o \in \mathcal{S}_{p}^{\text{before}}(s)} \sum_{d \in \mathcal{S}_{p}^{\text{after}}(s)}^{T} \sum_{t=1}^{T} \lambda_{t,\tau}^{o,d,p,v} \quad \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall s \in \mathcal{S}_{p}, \forall \tau = 1, ..., T; \\ & \sum_{v \in \mathcal{V}} \sum_{p \in \mathcal{P}^{o,d}} \sum_{\tau = \tau_{t}^{o,d,p}}^{T} \lambda_{t,\tau}^{o,d,p,v} = u_{t}^{o,d} \quad \forall (o,d,t) \in \mathcal{F}; \\ & L_{\tau}^{p,v,s} \leq C_{p} x_{\tau}^{p,v} \quad \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall s \in \mathcal{S}_{p}, \forall \tau = 1, ..., T; \\ & \lambda_{t,\tau}^{o,d,p,v} \geq 0 \quad \forall (o,d,t) \in \mathcal{F}, \forall p \in \mathcal{P}, \forall v \in \mathcal{V}, \forall \tau = 1, ..., T. \end{aligned}$$ ## **Technical Backup Slides – RL for Operation Control** #### Service - Flexible Feeder service with fixed and deviated stops - May serve booking requests outside of fixed route - Expand coverage with minimal LOS impact #### System overview - Control system updated with demand predictions - Service sends relevant information - Bus location, load, schedule delay #### The Reinforcement Learning approach - Light simulation model for environment representation - Offline training for long-term base policy - Online training for short-term adjustments